Structure, mechanical and thermodynamic stability of vacancy clusters in Cu

نویسندگان

  • Qing Peng
  • Xu Zhang
  • Gang Lu
چکیده

The atomic structure, mechanical and thermodynamic stability of vacancy clusters in Cu are studied by atomistic simulations. The most stable atomic configuration of small vacancy clusters is determined. The mechanical stability of the vacancy clusters is examined by applying uniaxial and volumetric tensile strains to the system. The yield stress and yield strain of the system are significantly reduced compared with the perfect lattice. The dependence of vacancy formation and binding energy as a function of strain is explored and can be understood from the liquid-drop model. We find that the formation energy of the vacancy clusters decreases monotonically as a function of the uniaxial strain, while the formation energy increases first then decreases under the volumetric tensile strain. The thermodynamic stability of the vacancy clusters is analyzed by calculating the Helmholtz free binding energy and the total probability of dissociation of the vacancy clusters at 300 and 900 K under uniaxial and volumetric strains. We find that although most of the vacancy clusters appear to be thermodynamically stable, some of the intermediate sized clusters have a high probability of dissociation into smaller clusters. (Some figures in this article are in colour only in the electronic version)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Investigation of Hyper-coordinate Planar Si Clusters in [SiMnHn]q (M = Cu, Ni and n = 4, 5, 6)

In this study, the geometries of the [SiNinHn]q and [SiCunHn]q clusters, (n = 4,5,6 and q = 0,+1,-1) complexes have been optimized to form complexes with four, five and six planar and nonplanarsubstituents, with negative, neutral or positive atomic charge, using Density FunctionalTheory (DFT) at B3LYP/6-311+G (3df, p) computational level and then their thermodynamicstability were investigated b...

متن کامل

The simultaneous effect of 3d impurities of transition metals and oxygen vacancy defect on TiO2 anatase and rutile

In this work, the formation of oxygen-vacancy defect in 3d metals-doped TiO2 anatase and rutile structures is first investigated. The systematic calculations of formation energy, crystalline stability, band structure and density of state (DOS) of TiO2 samples of anatase and rutile doped with 3d transition metals with and without oxygen defect is done using FHI-aims as a software package based o...

متن کامل

A STUDY OF SMALL VACANCY CLUSTERS IN IRON USING MANY BODY POTENTIAL

Computer simulation techniques are employed to obtain binding energies of 2,3 and 4 vacancy clusters in a -iron using the Finnis Sinclair many body potential. The results are compared with earlier pair potential calculations. The many body potential is found to be quite successful in simulating vacancy clusters

متن کامل

Density Functional Study on Stability and Structural Properties of Cu n clusters

In this research DFT/B3LYP method has been employed to investigate the geometrical structures,relative stabilities, and electronic properties of Cun (n=3–10) clusters for clarifying the effect of sizeon the properties. Through a careful analysis of the successive binding energies, second-orderdifference of energy and the highest occupied-lowest unoccupied molecular orbital energy gaps as afunct...

متن کامل

COMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS

The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010